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1.0 Introduction

The problem of constructing interpolation functions for sets of
scattered data in two independent variables has been treated in many papers.
The survey paper on approximations to multivariate functions by Schumaker [20]
contains extensive references. Other survey papers are by Barnhill [3]
and Sabin [19]. The present author has surveyed and tested a number of
algorithms for solution of the problem [10], [11]. Conceptually the
problem is quite simple: Given points (xk,yk,fk), k=1, ..., N, with
distinct (xk,yk), construct a function F(x,vy) so that F(Xk’yk) = fk’
k=1, ..., N. Generally one wants to have a smooth interpolant, F(x,y),
in the sense that low order partial derivatives are everywhere continuous.
This is complicated for large sets of data by the fact that the interpolant
(in a practical sense, to be computable) must be local, so that its value
at some point (xX,y) depends only on (xk'yk’fk) values for which (xk,yk) is
"close" to (x,y). A general framework for a class of such methods is
given in {9], and we will discuss it briefly in Section 2.

While a large number of ideas have been proposed for solution of
the problem, a much smaller number of working computer programs are readily
available. These include: (1) a3 method based on finite element functions
defined over triangles, due to Akima [1], [2], a version of which is

available in the IMSL* library under the name IQHSCV, (2) a program based
on a similar idea, due to Lawson [14], (3) two programs based on weighted
local approximacions by quadratic functions, due to Franke and Nielson [12].

A program by Little [13], and another by Nielson [18], both based on finite

*
International Mathematical and Statistical Libraries, 7500 Bellaire Blvd.,
Houston, TX 77036.
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element functions defined over triangles, will probably be available

by press time. All of these programs have been tested by the author

[10], [11], and most perform adequately in a variety of cases; None of
them seems to have a clear edge over all the others, or to be entirely
satisfactory. For certain applications, each has its good points. The
choice of a method for most users will be based on subjective criteria
which vary from person to person and application to application. It is
not surprising this is the case in two variables since it is also the case
in one variable, although perhaps to a lesser extent.

The purpose of this paper is to document an alternative scheme which
performed comparably well in the previously mentioned tests. In this way
the computer program will be brought to the attention of potential users,
who may request it from the author. The method will supplement the current-
ly available codes in that it is based on a different approach. It is
anticipated that it will find application and approval in a variety of areas.

The theoretical background for the method is discussed in Section 2,
while details of the program are outlined in Section 3. Section 4 gives
information concerning usage of the program. Several examples are given
in Section 5, including perspective plots of some surfaces generated by the
program. Included is an example of how the variation of a parameter in
the method affects the surface. General guidelines for choice of this
parameter are given, even though the suggested value usually leads to
satisfactory results. A general discussion of the features of the method

is given, along with general guidance for use of the program.

2.0 Theoretical Background

The general idea encompassing this scheme and many others are given
in [9]. Consider that the points (xk,yk,fk). k=1, ..., N are given.

Briefly, local approximations to the data are constructed, and these are

2
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then blended together by using weighting functions which form a partition
of unity on Rz. We pause to give the necessary notation and definicions.

A set of functions, wi(x,y), i=1, ..., mis said to form a partition
of unity if each wi(x,y) 2 0 and 1§1 wi(x,y) £ 1. The vy will be called
weight functions. Let the support of wy be denoted by Si = closure {(x,y):
Wi(x,Y) # 0}. Let I, - {k: (xk,yk) € Interior (Si)}. Now suppose that the

functions Qi(x,y), i=1, ..., m, are defined on S, and have the property

i
that they interpolate the data whose (x,y) coordinates are in Interior (S,),
i.e., 1f k ¢ Ii’ then Qi(xk’yk) = fk' These functions Qi will be called

local approximations. We then consider the function F(x,y) = f wi(x,y)Qi(x,y).
Its properties are summarized in the following. =
Proposition. The function F(x,y) = ? wi(x,y)Qi(x,y) has the following
properties: =t
(1) Interpolation; F(xk,yk) = fk’ k=1, ..., N.
(2) Smoothness; F(x,y) is at least as smooth as the v, and Qi’ e.g.,
if all of the functions Wis Qi’ i=1, ..., m have continuous
first derivatives, so does F(x,y).

(3) Local dependence on the data; Let (x,y) be fixed, and let

Jx,y = {{: w, (%,7) ¥ 0}, then F(x,v) depends only on the (%7 £

points for which k < v I.) u{i: some 0., j e J depends on
1eJ L J XYy
Y84
(x,,¥,»£,)}. 1In particular, we have F(x,v) = VW, (x,1Q, (x,v).
17171 ieJu i i
X,y

These properties are essentially observations, but form the basis for
construction of appropriate weight functions which will allow easy determin-
ation of the set Jx,y' Our counstruction vields a set of at most four nonzero
terms in the sum defining F(x,y). This provides a considerably faster process

during the evaluation of the interpolant than was possible in the choices

previously considered [9].




It has beer implied, but is not necessary for the proposition to

hold, that many of the weight functions, w,, have finite support. In order

i
for the local approximations Qi(x.y) to actually be local, this will
likely be the case. Therefore we think of weight functions whose support,
Si, contains relatively few (xk,yk) points, and whose support is often
local. In order for the interpolant to be defined on all of RZ, some sets
Si must not be finite, and typically would contain points (xk,yk) on or
near the boundary of the convex hull of the set of points ((xk,yk)}. With

this framework and ideas in mind, we are ready to discuss the specific

details of the algorithm.

3.0 Details of the Algorithm

3.1 Choice of Weight Functions

While the choice of weight functions was allowed to determine the
support regions in the discussion of the previous section, it is more
convenient to proceed from support regions to weight functions in the
actual application. The use of support regions which are rectangles have
specific advantages in terms of controlling the number of support regions in
which a particular point (x,y) lies, as well as simplifving determination
of those regions.

Let n_ and ny be given positive integers, and let finite values of

x

Xg <X <X, <L <x, < X, 41 and Y0 RYp SYy S eee S¥YL <Y be
x x y

given. For each i =1, 2, ..., n_ and § = 1, 2, ..., ny let ri,j =

-

(g g0 ®paq] < Dyypo yj+l]'

Let H3(s) -] - 332 + 233, the Hermite cubic satisfving HJ(O) =1,

H3(l) = 83(0) = Hé(l) = (0, We then define piecewise cubics with continuous
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first derivatives, which are nonzero only

on two adjacent intervals, and
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The ui(y) are dual. Then if we define

wi’j(x,y) = Vi(x)ui(Y) s

1 =1, ..., O =1, ..., ny,




it is easily observed that W, 3 has support r, v except for when { = 1 or nes

]

or j =1 or ny, when the support extends to = in one or both variables. We

denote the support of wi 3 by Ri 3 Further, we note that the wi 3 form a

2
partition of unity on R".

Since the x, and v

i 3

them grid values. The choice of grid values x

values give rise to a grid on the plane, we call

and y, depend on the data.

i b
They may be specified by the user, but the default option is for them to be

determined by the program. In the default mode the user specifies a parameter,
NPPR (for number of points per region), the suggested value being about 10.
The program will then determine the grid values so that the anticipated

number of (xk,yk) points in each rectangle R will be approximatelv NPPR.

i,]
For data which is not somewhat uniformly distributed the actual numbers may vary

considerably. However, for most situations we have encountered, the process

is quite adequate.

An equal number of grid values is taken in each direction, i.e., n, =n_.

)

Because we want NPPR points per rectangle, each subrectangle (xi,x

i
should have % NPPR points. Since o, =0, we want (nY + 1~ % NPPR = N,

leading us to take n to be the nearest integer to (AN/NPPR)I/2 - 1.

1410 X (yj Y41

The grid values X are now chosen so that there are approximately equal
numbers of points from the values X k=1, ..., N in each interval

(xi, xi+1). Specifically, let Qk denote the X values arranged in non-

decreasing order. Consider the points (O,QI), (1,§2), ooy (N-1, QN), and

let g(t) be the plecewise linear interpolant for them. Divide the interval
(0,N-1) into nx+ 1 subintervals of length A = E:%T . The values of ;i are
determined by taking them to be the values of gxat the endpoints of the
subintervals, {.e., ;i = g(1), £t=0,1, 2, ..., nx+ 1. The ;j are determined

in dual fashion. This process results in the grid values and hence the

rectangles, being symmetric 1if che (xk,yk) points are svmmetric. In addition,

the relative positions of grid values are unchanged by linear displacements

6




and stretching in each variable.

When chosen in the above fashion, the location of the lines is not
a local process in the sense that insertion of an additional point will
change the boundaries of all of the rectangles. %“hile one could argue that
then the scheme is not local, we take the view that the idea of local
determination of the interpolant is most important in the evaluation phase.

The determination of parameters in the scheme (here, the x, and yj) may be

i
a global process. Of course, if the user specifies the grid values, he will
likely be using a global process to choose them.

3.2 Choice of Local Approximations

The only constraint on the local approximations is that they interpolate
the appropriate points, and that they have continuous first derivatives
(at least) to assure a smooth interpolant. In the previously mentioned tests
conducted by the author, a number of global interpolation schemes for scattered
data were considered. In principle, any of these might be used. The choice
here was made for two reasons, (1) the method scored very well in the tests,
and (2) the method has an elegant and well developed mathematical theory which
also has direct application to some engineering problems.

The local approximations used in this algorithm are the thin plate splines
first mentioned by Harder and Desmairis [13], with theoretical developments
by Duchon [4-7] and Meinguet [16], [17]. It was first developed as the
solution to the problem of a thin plate which is forced to pass through
certain points (the interpolation points) by application of point loads. For
our purposes it is sufficient to know that the approximation is of the form

Q(x,y) = § Akdi log d, + a +bx +cv ,
kel

where I = {k: Q is to take on the value fk at (xk,yk)}, and di = (x - xk): +

2
(y - yk)“. The coefficients Aps and a, b, and ¢ are determined bv the linear




svstem of equations

5 |
) A, d; log d, + a + bx + av { = £ izl
- XK k ‘
kel (x,v) = (Ki,Yi)

I a4 =0

kel

I ax =0

kel

] Ay, =0
kel kk k
The geometric effect of the last three equations is to suppress all terms

in the approximation which grow faster than linear as distance from the
interpolation points is increased. A linear system of crder equal to the
number of interpolation points plus three must be solved. To be nonsingular

there must be at least three noncollinear points among the (xk,y Y, keI,

k
The system is symmetric, but not positive definite. While an equation

solver designed for such svstems could be used, we have found a general

purpose solver, the DECOMP/SOLVE subroutines of Forsvthe, Malcolm, and Moler (3]
has given more reliable results.

It is easily observed that the local interpolant has continuous derivatives
of all orders except at the data points, (xk.yk), where a logarithmic
singularity occurs in the second derivatives. The interpolant has linear
precision, that is, if the (xk,yk,fk) points all lie on a linear function, the
interpolant will reproduce it.

While the thin plate spline is invariant with respect to scaling, trans-
lation, and rotation (not all of this is obvious), the condition number of
the coefficient matrix for the svstem of equations is dependent on scaling.

To minimize difficulties with that, and to remove the effect of scaling the
variables by different amounts, we transform each rectangle r onto the unit

i,]

2
square [0,1]7, before the local approximation Qi is computed.

+3

8




It remains to specify the process for determining the points (xk k’: )

to be interpolated by the “hia sliate spline local approximation., Experience

2as saown that it is advantageous to include more points than is necessarv,

i.e., (x,v,) which are outside cf R, .. This tends to vield a better tins-
1 S

k4

ition between local approximations than when only necessarv points are included.
The set of (xk,yk) points transformed into the rectangle R = [-.1125, 1.1125]2

2
by the transformation taking . 3 onto [0,l]” are included. Let

’

- x, ¥, - V.
L= ke Tk LR IR S L2 S
141 T ¥iel Y341 T Yy-1

This gives the basic set of interpolation points for the local approximation
Qi 3 associated with the rectangle Ri i Und2r certain conditions there may
’ ’

be fewer than the necessary three indices in I, .. When this hapoens, the

3

set Ii ; is augmented by including as interpolation pcints the necesarv

,

number of closest points to the rectangle Ri 5 ( in the i, norm), after the

b

points (xk,yk) have undergone the transformation to the unit square. The
minimum number of points per rectangle is a variable, MINPTS. This has been

set to 3, but may be increased if it seems desirable.
After the interpolation points for each local approximation nave bHeen

determined, the local thin plate splines, Qi ;> can he determined bv
s

calculating the coefficients. This yields

= 2 '+ + LRSS .
U g T LAy d T Ay ey ox ey
i,]

where the primes denote coordinates and distance after the transformation of
r, ., to the unit square

i,]
3.3 Properties of the Interpolant

The overall interpolant is of the form

nx nx
F(x,y) = Z W ,(X,V)Q (x'.v),
1 ghy b L

9




and as noted previouslyv, there are at most four nonzero terms in the sum.

Which terms are nonzero is easily determined. If x 2 X, set ' = ns
- X

Otherwise let i' be the smallest index so that Xy X Determine j' in

s. Then, the four nonzero terms have indices

dual fashion from v and the vj'

(A3, 1'+1,3"), (1',3'+1), and (L'+1,3'+1). If i' =0 or i' = Ns the
terms involving i' or i'+l, respvectively, do not appear, and similarlv if

~

j' =0 or j' = n,, the terms involving i' or j'+l, respectivelv, do not

P

appear.

In dition to the properties outlined in Section 2, certain other
properties hold. The approximation is invariant under translation and
stretching (independently in each variable). It has symmetry with respect
to planes parallel to coordinate planes whenever the data has that symmetrv.
The approximation is not invariant under rotations, however, since the
rectangles depend on the individual coordinates of the data points.

The approximation has continuous first derivatives, and jump dis-~
continuities in the second derivatives across grid lines, as well as
logarithmic singularities in the second derivatives at the data points.
Plots of the surfaces generally appear to be quite smooth, however. Since
the local approximations have linear precision, the overall approximation
also has linear precision, i.e., if the data lies on a linear function, the

interpolant is a linear functiom.

4.0 The Computer Program

The overall hierarchy of the subroutines is given in Diagram 1, which
shows the communication links between them. No COMMON is used as arrav
sizes are problem dependent and thus specified by the user. We brieflv

discuss them, mentioning important parameters.

10
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!
I
, USER PROGRAM
{

LOTPS

GRID LOCLIP CLOTPS EVLTPS

DECoMP
SOLVE

VSORTA
(IMSL)

[ ]

Diagram 1.

Calling Program

This program ié\supplied by the user and must supply the (xk,yk,fk)
points, plus two arta%s of points in, and ij for the grid of pcints
(in,ij) at which ché interpolant is to be evaluated. In addition, the
user must supply two workspace arravs, IWK and WK in which information
calculated during preprocessing (e.g., Ii,j’ ;i’ ;j’ and coefficients for
the local approximations), is stored, and an arrav FO for the returned
interpolant values.

The amount of storage required for the arravs IWK and WK is not
known a priori. The estimated space required is about 6N for IWK and
about 7N for WK. Table 1 gives exact results for several different sized

problems based on random (x,y) points. 0ddly distributed point sets may

result in somewhat more storage being required. In any case, the precise

11




r——————-——-——-———-————————:

number of locations required is returned to the calling program from
Subroutine LOTPS, the only routine referenced by the user. If an in-
sufficient number are allowed, an error return occurs.

Under the usual option, the user specifies NPPR > 0, the suggested
value being 10. If the user wishes to specify the grid lines, he mav

do so by setting NPPR = 0, and then giving grid line information in the

arrays IWK and WK, as explained in the argument description for Subroutine

= i y = 1
LOTPS. Typically one should take X min X, X, !X X, and the dual

+1
X

in y. This is not necessary, although all points to be interpolated should

, , . i r )
lie in [xo. xnx+l] [yo, Y +l]. To prevent different scaling (iaternall
in the two variables, a square grid covering the (xk,yk) points could be
specified.

Subroutine LOTPS

This subroutine provides the interface between the user's program and
the set of routines implementing the method. Generally, LOTPS sets up
storage areas in the arrays IWK and WK, determines parameters required by
other subroutines, and calls other subroutines to (1) generate the grid, if
necegsary, (2) determine the interpolation points for the local approximations,
(3) compute coefficients for the local approximations, (4) evaluate the
interpolant at a grid of points.

Subroutine GRID

This subroutine selects values of X and yj in accordance with the

discussion in Section 3.

Subroutine LOCLIP

This subroutine determines the interpolation points for each local
interpolant, in accordance with Section 3.

Subroutine CLOTPS

This subroutine generates the system of equations for the coefficients

of the local approximations and calls an equation solver to obtain them.




Internally the routine has a maximum of 30 local interpolation points.

This can easily be altered by changing two statements, as noted in the

program listing.

Subroutine EVLTPS

This subroutine evaluates the interpolant on the grid of points specified
by the user. Use of a grid, when that is required, facilitates the process
of locating the rectangle in which a particular evaluation point is located.

The in and in values should be in increasing order for maximum efficiencyv.

Evaluation time for a grid of points should be nearly independent of N for

large N, which is borne our by the timing information in Table 2.

5.0 Examples and Observations

Example 1. This example shows a typical local approximation function and
ig for the data in Table 1. This function Is a '"cardinal' function for the
first point, and as such shows the effect of a nonzero value at a single pcint
on the interpolant. The plotted surface, shown in Figure 1, is over [0,1]

Example 2. This example is given to show a surface generated from 100
randomly generated points with the function value being obtained from an
explicitly given function. The surface was generated using NPPR = 10, has
mms error of about .37%, and is virtuallv indistinguishable from a plot of the
parent surface. It is shown in Figure 2.

Examples 3, 4, 5. These examples use the same set of 60 points lying

in the square ( - T% , %% )2, and chosen by a pseudorandom number generator.

sin 3(x+v)
12(x+y)

shown in Figure 3. Figures 4, 5, and 6 show the interpolant over the square

The function is explicitly given by f(x,y) = .1 + » and 1is

[O,l]2 for NPPR values of 6, 19, and 15.
From these examples we see that NPPR = 10 works well, not too much

difference is observed when NPPR is increased, but YPPR = 4 gives a less

13




smooth appearing surface. The smaller NPPR is, the more localized the
surface becomes (although NPPR = 4 will probablv be the least value

practicable, and some local interpolants will likelv become planes due to

the minimum of three interpolation points being reached). In line with
this comment, very smooth surfaces with small gradients will probably be
"gggpable to larger NPPR, while surfaces with large gradients mav be best
. approximated by taking NPPR smaller, thus localizing the behavior.
Table 2 gives the results of a series of problems with various numbers
of points and values of NPPR. The data points were chosen bv a pseudcrandom
1 19 ,2

18 18 1°, and the approximation was

evaluated on a 33x33 grid (of 1089 points total) on [O,l]z. We observe that

number generator in the square [ -

increasing NPPR increases execution time while decreasing the amount of
storage needed. Preprocessing time should be about proportional to Nl, but
apparently there is a strong linear component for small N. Preprocessing
time should also be about proportional to NPPR, although this is not readilv
apparent. Evaluation time should be nearly independent of N for large N, and
proportional to NPPR, which is approximately shown.

The automatic grid selection process works well when the data is
fairly uniform in (x,v) and lies nearlvy in a square region. If the data is
very irregular, or lies in an oblong rectangular area, it will probably be
useful to explore results with a user specified grid to obtain better coverage
by rectangles which are not too oblong. Limited experience has been

accumulated in these situations.

6.0 How to Obtain this Program

A copy of this program, written in Fortran, and including 3 sample
driver program, can be obtained from the author. To do so, send a (short)

1/2 inch tape to the author indicating the format desired.

14
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x y f

0.35 0.35 0.5
-0.05 0.25 0.0 \
0.10 -0.05 0.0
0.30 0.05 0.0 ;
0.00 0.90 0.0

0.30 0.70 n.n :
0.60 0.50 0.9

0.90 0.00 0.0

0,40 1.05 0.0

0.85 0.80 0.0

1.05 0.20 0.0

1.10 1.10 0.0

Table 1: Data for '"Cardinal" function.
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Time Time
NPPR N n=n, NWKU NIWKU (Preprocessing) (Evaluation)
6 60 5 334 273 4,2 14.3
6 100 7 619 506 7.5 17.6
6 500 18 3596 2893 70.5 21.2
6 1000 25 7441 6140 201.5 21.3
10 60 4 284 243 5.3 18.0
10 100 5 488 427 9.9 26.4
10 500 13 3014 2649 73.3 29.8
10 1000 19 6565 5804 202.6 31.7
15 60 3 224 199 6.8 23.0
15 100 4 414 373 12.4 32.8 .
15 500 11 2856 2591 91.6 39.3 »
15 1000 15 5920 5439 258.5 40.6

Table 2: Storage/Times for Various Size Problems.
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